Intramembrane proteolysis by presenilin and presenilin-like proteases.
نویسندگان
چکیده
Regulated intramembrane proteolysis is a novel mechanism involving proteases that hydrolyze their substrates in a hydrophobic environment. Presenilin (PS) 1 and PS 2 are required for intramembrane cleavage of an increasing number of type I membrane proteins, including the amyloid precursor protein of Alzheimer's disease and the Notch receptor, which signals during differentiation and development. Mutagenesis, affinity labeling, biochemical isolation, and reconstitution in cells reveal that PS, in complex with co-factors nicastrin, APH-1 and PEN-2, apparently contains the active site of gamma-secretase, a novel membrane aspartyl protease. In addition, other related aspartyl proteases have been identified. These include members of the type-4 prepilin peptidase family in bacteria, which are known proteases and carry a GD motif conserved in PS. A group of multi-pass membrane proteins found in eukaryotes also contain YD and LGXGD motifs in two transmembrane domains that are conserved in PS and postulated to constitute an aspartyl protease active site. Among these is signal peptide peptidase (SPP), which cleaves remnant signal peptides derived from signal-peptidase-mediated ectodomain shedding. SPP cuts type II membrane proteins, illustrating that PS-like proteases play a key role in intramembrane proteolysis of single-pass membrane proteins oriented in either direction.
منابع مشابه
Long-term Proposal Report Structural Study of Regulated Intramembrane Proteolysis
Regulated Intramembrane Proteolysis (RIP) is a highly conserved signaling mechanism, where a signaling molecule is cleaved within the lipid bilayer by an intramembrane protease. Traditional wisdom argued that proteolysis requires water; however, in RIP, both the protease and the substrate are integral membrane proteins and the cleavage occurs within the hydrophobic lipid bilayer. It has been mo...
متن کاملIdentification of an Archaeal Presenilin-Like Intramembrane Protease
BACKGROUND The GXGD-type diaspartyl intramembrane protease, presenilin, constitutes the catalytic core of the γ-secretase multi-protein complex responsible for activating critical signaling cascades during development and for the production of β-amyloid peptides (Aβ) implicated in Alzheimer's disease. The only other known GXGD-type diaspartyl intramembrane proteases are the eukaryotic signal pe...
متن کاملSubstrate recruitment of c-secretase and mechanism of clinical presenilin mutations revealed by photoaffinity mapping
Intramembrane proteases execute fundamental biological processes ranging from crucial signaling events to general membrane proteostasis. Despite the availability of structural information on these proteases, it remains unclear how these enzymes bind and recruit substrates, particularly for the Alzheimer’s diseaseassociated c-secretase. Systematically scanning amyloid precursor protein substrate...
متن کاملSubstrate recruitment of γ-secretase and mechanism of clinical presenilin mutations revealed by photoaffinity mapping.
Intramembrane proteases execute fundamental biological processes ranging from crucial signaling events to general membrane proteostasis. Despite the availability of structural information on these proteases, it remains unclear how these enzymes bind and recruit substrates, particularly for the Alzheimer's disease-associated γ-secretase. Systematically scanning amyloid precursor protein substrat...
متن کاملMutational re-modeling of di-aspartyl intramembrane proteases: uncoupling physiologically-relevant activities from those associated with Alzheimer’s disease
The intramembrane proteolytic activities of presenilins (PSEN1/PS1 and PSEN2/PS2) underlie production of β-amyloid, the key process in Alzheimer's disease (AD). Dysregulation of presenilin-mediated signaling is linked to cancers. Inhibition of the γ-cleavage activities of PSENs that produce Aβ, but not the ε-like cleavage activity that release physiologically essential transcription activators,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 116 Pt 14 شماره
صفحات -
تاریخ انتشار 2003